High Theta and Low Alpha Powers May Be Indicative of BCI-Illiteracy in Motor Imagery

نویسندگان

  • Minkyu Ahn
  • Hohyun Cho
  • Sangtae Ahn
  • Sung Chan Jun
چکیده

In most brain computer interface (BCI) systems, some target users have significant difficulty in using BCI systems. Such target users are called 'BCI-illiterate'. This phenomenon has been poorly investigated, and a clear understanding of the BCI-illiteracy mechanism or a solution to this problem has not been reported to date. In this study, we sought to demonstrate the neurophysiological differences between two groups (literate, illiterate) with a total of 52 subjects. We investigated recordings under non-task related state (NTS) which is collected during subject is relaxed with eyes open. We found that high theta and low alpha waves were noticeable in the BCI-illiterate relative to the BCI-literate people. Furthermore, these high theta and low alpha wave patterns were preserved across different mental states, such as NTS, resting before motor imagery (MI), and MI states, even though the spatial distribution of both BCI-illiterate and BCI-literate groups did not differ. From these findings, an effective strategy for pre-screening subjects for BCI illiteracy has been determined, and a performance factor that reflects potential user performance has been proposed using a simple combination of band powers. Our proposed performance factor gave an r = 0.59 (r(2) = 0.34) in a correlation analysis with BCI performance and yielded as much as r = 0.70 (r(2) = 0.50) when seven outliers were rejected during the evaluation of whole data (N = 61), including BCI competition datasets (N = 9). These findings may be directly applicable to online BCI systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

A Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System

Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...

متن کامل

Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification

Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states.  Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...

متن کامل

Estimating Noise and Dimensionality in BCI Data Sets: Towards Illiteracy Comprehension

About one third of the BCI subjects cannot communicate via BCI, a phenomenon that is known as BCI illiteracy. New investigations aiming to an early prediction of illiteracy would be very helpful to understand this phenomenon and to avoid hard BCI training for many subjects. In this paper, the first application on to electroencephalogram (EEG) of a newly developed machine learning tool, Relevant...

متن کامل

The predictive role of pre-cue EEG rhythms on MI-based BCI classification performance.

BACKGROUND One of the main issues in motor imagery-based (MI-based) brain-computer interface (BCI) systems is a large variation in the classification performance of BCI users. However, the exact reason of low performance of some users is still under investigation. Having some prior knowledge about the performance of users may be helpful in understanding possible reasons of performance variation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013